The Comparison among ARIMA and hybrid ARIMA-GARCH Models in Forecasting the Exchange Rate of Iran

نویسندگان

  • Mosayeb Pahlavani
  • Reza Roshan
چکیده مقاله:

This paper attempts to compare the forecasting performance of the ARIMA model and hybrid ARMA-GARCH Models by using daily data of the Iran’s exchange rate against the U.S. Dollar (IRR/USD) for the period of 20 March 2014 to 20 June 2015. The period of 20 March 2014 to 19 April 2015 was used to build the model while remaining data were used to do out of sample forecasting and check the forecasting ability of the model. All the data were collected from central bank of Iran. First of all, the stationary of the exchange rate series is examined using unit root test which showed the series as non stationary. To make the exchange rate series stationary, the exchange rates are transformed to exchange rate returns. By using Box-Jenkins method, the appropriate ARIMA model was obtained and for capturing volatilities of returns series, some hybrid models such as: ARIMA-GARCH, ARIMA-IGARCH, ARIMA-GJR and ARIMA-EGARCH have been estimated. The results indicate that in terms of the lowest RMSE, MAE and TIC criteria, the best model is ARIMA((7,2),(12)) –EGARCH(2,1). This model captures the volatility and leverage effect in the exchange rate returns and its forecasting performance is better than others.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the comparison among arima and hybrid arima-garch models in forecasting the exchange rate of iran

this paper attempts to compare the forecasting performance of the arima model and hybrid arma-garch models by using daily data of the iran’s exchange rate against the u.s. dollar (irr/usd) for the period of 20 march 2014 to 20 june 2015. the period of 20 march 2014 to 19 april 2015 was used to build the model while remaining data were used to do out of sample forecasting and check the forecasti...

متن کامل

TES Processes and ARIMA Models: A Comparison of Forecasting Performance

Forecasting is of prime importance for accuracy in decision-making. For data sets containing high autocorrelations, failure to account for temporal dependence will result in poor forecasting. TES (Transform-Expand-Sample) is a class of stochastic processes to model empirical autocorrelated time series and is frequently used in Monte Carlo simulation. Its merit is to capture simultaneously both ...

متن کامل

Comparison of Four Interval ARIMA-base Time Series Methods for Exchange Rate Forecasting

In today’s world, using quantitative methods are very important for financial markets forecast, improvement of decisions and investments. In recent years, various time series forecasting methods have been proposed for financial markets forecasting. In each case, the accuracy of time series methods fundamental to make decision and hence the research for improving the effectiveness of forecasting...

متن کامل

Forecasting irish inflation using ARIMA models

This paper outlines the practical steps which need to be undertaken to use autoregressive integrated moving average (ARIMA) time series models for forecasting Irish inflation. A framework for ARIMA forecasting is drawn up. It considers two alternative approaches to the issue of identifying ARIMA models the Box Jenkins approach and the objective penalty function methods. The emphasis is on forec...

متن کامل

Fuzzy ARIMA model for forecasting the foreign exchange market

Considering the time-series ARIMA(p,d, q) model and fuzzy regression model, this paper develops a fuzzy ARIMA (FARIMA) model and applies it to forecasting the exchange rate of NT dollars to US dollars. This model includes interval models with interval parameters and the possibility distribution of future values is provided by FARIMA. This model makes it possible for decision makers to forecast ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 7  شماره 1

صفحات  31- 50

تاریخ انتشار 2015-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023